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Nonlinear Natural Control of an Experimental Beam

L. Meirovitch* and H. Baruhj
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

and
R.C. Montgomery^ and J.P. WilliamsJ

NASA Langley Research Center, Hampton, Virginia

This paper is concerned with an experiment conducted at the NASA Langley Research Center that was
designed to control the motion of a beam. The experimental setup consists of a free-free uniform beam acted
upon by four electromagnetic force actuators, with the motion being measured by nine displacement sensors.
The entire assembly is linked to a digital computer permitting on-line real-time computation of the control
forces. The control scheme is based on the independent modal-space control method in conjuction with a
nonlinear, on-off control law for the modal forces. The actuator forces are then synthesized from the modal
forces by means of a linear transformation, resulting in quantized forces. The sensors' data are processed by
modal filters. It is observed that the independent controls are very effective in suppressing the motion of the
beam, even though there is about a 50% difference between the actual and the analytically computed natural
frequencies.

I. Introduction

AN important question in the control of large flexible
space structures is whether it is possible to control the

structure by means of on-board computers performing real-
time computations. To test the ability of various theories to
carry out the control task, experiments have been designed by
NASA1'2 and the Jet Propulsion Laboratory.3'4 This paper
reports the results of an experiment conducted at NASA
Langley Research Center involving the independent modal-
space control (IMSC) method.

The Langley experiment consists of a 12-ft aluminum beam
suspended from the ceiling by two cables, so that it behaves
like a free-free structure, and involves four electromagnetic
force actuators attached to the beam and nine noncontacting
displacement sensors. The sensors' data are transmitted to a
CDC Cyber 175 digital computer, which generates control
forces in discrete time. These force commands are transmitted
to an EAI 680 analog computer that, through a high-gain
electrical circuit, generates the current commands to the
actuators.

Theoretically, any type of control law can be used to
suppress the motion of a flexible structure. In practice,
however, there is a constraint on the type of control laws in
the time required between displacement sensing and the
application of the control forces. Indeed, the entire process is
carried out in discrete time, and there is a lag of one sampling
period between the displacement sensing and and the ap-
plication of the control forces.5 This implies that the entire
control cycle (consisting of the displacement sensing,
processing the data on the computers, and application of the
feedback control forces by the actuators) must be smaller than
the sampling period. On the other hand, there is a limit on the
length of the sampling period. Indeed, if the sampling period
is too large, then the lag between the displacement sensing and
the application of the forces by the actuators can cause in-
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stability, so that the sampling period should be made as small
as possible. This lag of one sampling period can be eliminated
if the control forces are computed in a very small fraction of
the sampling time and reset to their new values in the
beginning of the sampling interval. This results in improved
stability characteristics of the control, but places more
restrictions on the number of computations that can be
performed during the control cycle. Hence, a control
algorithm capable of generating the actuator forces from the
sensors' data in minimum time is highly desirable. Note that,
because of the compensating circuits involved in the ex-
perimental setup, which would not be needed in an actual
space environment, the lag of one sampling period could not
be eliminated for the Langley beam experiment.

In one sense or another, most methods for the control of
flexible structures are modal control ones.6'10 The idea behind
modal control is to control the motion of a structure by
controlling its modes. Modal control is dictated by the fact
that a structure is a distributed-parameter system and one
would encounter enormous computational difficulties in
deriving control gains depending on the spatial position. One
approach to modal control is to consider only a finite number
of modes, generally the lower ones. Then, expressing the
motion as a superposition of these modes, the partial dif-
ferential equation of motion is replaced by a set of ordinary
differential modal equations. In general, the modal equations
are coupled by the feedback forces.7 In the special case of the
IMSC method, the modal feedback forces are independent, so
that the closed-loop equations of motion are decoupled.8"10

Hence, by analogy with the term "natural coordinates" used
in vibration analysis to denote uncoupled coordinates, in-
dependent controls are referred to as natural controls. Then,
the actuator forces are synthesized from the independent
modal forces by a simple linear transformation.

The fact that in IMSC the feedback forces are designed
independently for each mode permits an enormous com-
putational saving in the generation of the actuators' forces
from the sensors' data, so that the control cycle is minimal. In
turn, this permits a relatively small sampling period, thus
obviating the instability problem that would be caused by a
large sampling period. Moreover, because the control
problem is reduced to that of controlling a set of independent
section-order systems, natural control can accommodate a
large variety of control laws, including nonlinear controls. To
demonstrate this, in the present study nonlinear control laws
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Fig. 1 The Langley experimental beam setup.

are used in the form of on-off modal controls. Because the
actual controls are linear combinations of the modal controls,
the actual controls are quantized.

There exist two major procedures for processing the sen-
sors' data to obtain the modal coordinates so as to permit
design of modal control forces. The first relies on the use of
observers.11 It has been shown, however, that the use of
observers leads to observation spillover from the uncontrolled
modes capable of destabilizing these modes.7 The second
consists of implementing modal filters.9 Modal filters can
eliminate observation spillover, provided an adequate number
of measurements is used. They also require less com-
putational effort for implementation than observers. Ob-
servers and modal filters are not mutually exclusive and one
can use modal filters for modal displacements in conjunction
with modal observers to recover the modal velocities. In the
present study, modal filters are used exclusively. In the
Langley beam experiment, the four lowest modes—the
translational and rotational rigid body modes and the two
lowest flexible modes—were controlled using a nonlinear on-
off modal control law based on IMSC. Natural control was
very effective in suppressing the motion of the beam, damping
out the motion in a very short period of time, in spite of the
fact that the actual frequencies were about 50% higher than
the frequencies determined by an analytical approach. This
demonstrated the robustness of the IMSC method using a
nonlinear control law in an ad hoc manner. The robustness of
the IMSC method for linear control has been demonstrated
earlier.12

II. Experimental Setup
The experimental apparatus is shown in Figs. 1 and 2, and it

consists of a 12 ft 6061 aluminum beam suspended from the
ceiling by two lightweight 5 ft cables.1 The beam weighs 16.2
Ib and has a cross section of 6x3/16 in. The material
properties of the beam are E= 107 psi, p = 0.1 Ibm/iri. (Ref.
3). It was assumed that the beam acts like a free-free struc-
ture, so that the beam was modeled and the control forces
were designed ignoring the cables.

Four electromagnetic force actuators and nine non-
contacting displacement sensors were used. The actuators
have a stroke of 1 in. and a maximum force output of 50 Ibf.
They are attached to the beam with spring steel flexures that
permit transverse vibration in the horizontal plane while
suppressing torsional vibration. The flexures are attached to
strain gage load cells hard mounted to the beam. An ad-
ditional purpose of the suspension cables is to maintain a
horizontal loading condition by preventing droop of the end
of the actuator attachment assembly. On the side of the beam,
opposite the side of the actuators, are noncontacting
deflection sensors with a range of 2 in. The resolution of the
sensors is 0.001 in. The nine sensors can be placed at arbitrary
stations along the beam.

The components mentioned above are interfaced to the
NASA Langley (LaRC) Cyber 175 real-time computer system.

Fig. 2 Closeup of sensor-beam-actuator assembly.

A high-gain analog electrical circuit assures that commanded
forces from the control system resident on the Cyber com-
puter are realized at the load cells on the beam. For this
reason, the force commands form the Cyber computer are
sent to the EAI 680 analog computer that, through the use of
the circuit, generates the current commanded to the ac-
tuators.1 The maximum commanded load from the Cyber is
set to 10 Ibf, whereas the maximum value that the Cyber can
read from the load cells is 20 Ibf. Four of the sensors are
collocated with the actuators to compensate for actuator
nonlinearities. Details of the actuator compensation circuit
can be found in Ref. 1. The sampling time was chosen as
l/64s.

III. Modal Equations of Motion
The equation of motion for a self-adjoint distributed-

parameter system can be written in the form of the partial
differential equation (Ref. 13] Sec. 5-4).

Lu(P,t)-+M(P)d2u(P,t)/dt2=f(P,t) (1)

which must be satisfied at every point P of the domain A
where u(P,t) is the displacement of point P, L a linear dif-
ferential self-adjoint operator of order 2/7, M(P) the
distributed mass, and f ( P , t ) the distributed controls. The
displacement u(P,t) is subject to the boundary conditions
Bjii(P,t) =0 (/= 1,2,...,/?), where Bt are linear differential
operators. The solution of the associated eigenvalue problem
consists of a denumerably infinite set of eigenvalues \r and
associated eigenfunctions 0 r(r= 1,2,...). The eigenvalues are
related to the natural frequencies o>r by \ = u2

r (r=l,2,...).
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Note that frequencies corresponding to rigid-body modes are
zero. Because L is self-adjoint, the eigenfunctions possess the
orthogonality property and they can be normalized so as to
satisfy

M<l>r<l>sdD=6rs, \ <£5L<M£>=XAs, r,s=l,2,...
D JD '

(2)

where ur (t) are modal coordinates, Eq. (1) can be replaced by
the infinite set of ordinary differential equations

we can write

where drs is the Kronecker delta.
Using the expansion theorem13

ur(t)+<J)2
rur(t)=fr(t),

known as modal equations, in which

(3)

(4)

are modal control forces.
Equations (3) have the appearance of an infinite set of

independent second-order differential equations and, in the
absence of feedback control forces, they indeed are. If
feedback control forces are present, however, and the modal
feedback control force fr(t) depends on all the modal
coordinates and velocities, Eqs. (3) are coupled through the
feedback controls. Hence, in this general case Eqs. (3) are
externally coupled, so that the equations are not independent.
In the special case in which fr depends on ur and ur alone,
fr=fr(ur,ur) (r=l,2,...), Eqs* (4) become both internally
and externally decoupled. This is the essence of the in-
dependent modal-space control method.8'10 Because the
modal equations are independent, by analogy with the term
"natural coordinates" used in vibration analysis to denote
uncoupled coordinates, the independent modal^space control
is referred to as natural control.10 Natural control permits
both linear and nonlinear control, and the method has been
shown to be very effective in controlling distributed
systems.10 . . "

Natural control can be implemented by means of discrete or
distributed actuators and sensors. We consider here the
problem of controlling n modes using m discrete actuators.
The discrete actuator forces can be treated as distributed by
writing

(5)

Introducing Eq. (5) into Eqs. (4), we obtain
^ .

/r( ' )=£ tr(P)Fj(t)5(P-Pj)dD
j=i JD

m_ . . . . . . .
= H<l>r(Pj)Fj(t), r=l,2,..,,n

f 2 ( t ) . . . f n ( t ) ] T

F2(t)...Fm(t)]T

Introducing the vectors

and the n x m matrix

(6)

(7a)

(7b)

(8)

f(t)=BF(t) (9)

In the IMSC method the modal control vector is determined
first. Then, the actual controls can be synthesized from the
modal controls by

(10)F(t)=B~1f(t)

which requires B to be a square and nonsingular matrix.
Hence, implementation of natural control by discrete ac-
tuators requires that the number of actuators be equal to the
number of controlled modes.

The effect of having discrete actuators is that some of the
control energy is pumped into the uncontrolled modes,
creating control spillover. This is typical of any control
scheme.

For feedback controls, one must extract the modal
displacements and velocities associated with the controlled
modes from the system output. To this end, we can make use
of the second part of the expansion theorem13 and write

(lla)

r=l,2,... (lib)

= M(P)<t>r(P)u(P,t)dD,

= M(P)<t>r(P)u(P,t)dD,

Equations (11) can be regarded as modal filters. They permit
the extraction of the modal displacement ur.(t) and modal
velocity ur(t) from distributed measurements of the actual
displacement u(P,t) and actual velocity u(P,t) at every point
P of the domain D and at all times /. Hence, if modal filters
are used, then all the system modes are observable and can be
regarded as modeled, so that control of the actual distributed
system is possible, although in practice control of a finite
number of modes is often sufficient. Having u r ( t ) and ur ( t) ,
one can generate the modal controls fr ( t) .

The modal filters described by Eqs. (11) require distributed
measurements ofu(P,t) andu(P,t) and integration along the
spatial domain. However, the present state-of-the-art permits
only discrete measurements. It is shown in Ref. 9 that it is
possible to implement modal filters by using only a finite
number of discrete sensors and by spatially interpolating the
sensors' output to obtain displacement and velocity profiles.
The interpolation functions can be chosen from the finite
element method and the integrations can be performed as off-
line computations.9 The displacement and velocity profiles
thus generated can then be used to extract the modal
displacements and velocities associated with the controlled
modes. Hence, a finite number of sensors can estimate a given
number of modal displacements and velocities accurately;
furthermore, it is relatively easy to determine this number.
The estimated modal coordinates become14

_ _
ur(t) = /^(O, ur(t)= llvi(t), r=l,2,...,n

i=l . i=l
(12)

where ur and ur are the estimated modal displacements and
velocities, respectively, s the number of subdomains, and
Vj(t) a vector of displacement measurements and vt(t) a
vector of velocity measurements at the boundaries of the /th
s.ubdomain. In addition,

Iir={ M(P)<l>r(P)LdD, 1=1,2,.. .,s; r=l,2,...,n (13)
*Di

where L is a vector of interpolation functions from the finite
element method. It is clear from Eqs. (13) that the in-
tegrations can be performed as off-line computations.
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The quantities Iir can be rearranged so as to permit writing

ur(t) =

where

ur(t)= , r=l,2,...,n

(14)

(15)

in which P, denote the sensors' locations. Introducing the
vectors

u2(t)...un(t)}T

u2(t)...un(t)]T

y2(t)...yk(t)}T

y2(t)...yk(t)]T

and the n x k matrix C=[CrJ]9 we can write

' u ( t ) = C y ( t ) , - u ( t ) = C y ( t )

(16)

(17a,b)

The manner in which C is assembled from Iir depends on the
nature of the interpolation functions .

IV. The Langley Beam Experiment
The parameters associated with the beam are given in

Sec. II. The mass and stiffness distributions are
M(x)=M=2.911xlO-4 Ib-sVin.2, EI(x) =£"7=3296
lb.-in.2, £=144 in., L-EI tf/dx4, 0<*<£, where x is the
spatial variable. The eigensolution of the free- free beam can
be obtained in closed form. 13 The eigenfunctions are

l, <>>2(x)=x-t/2

0r (x) = (cos /3r£- cosh 0r£) (sin $rx+ sinh firx)

- (sin jS^sinh /3r£) (cos /3,Jt+cosh @rx), r=3,4....(18)

where pr=(w2
rM/EI) * (r=3,4,...). Note that in Eqs. (18)

the eigenfunctions are not in normalized form. They were
normalized later when designing the control forces. The
natural frequencies cor are

co; =co2=0 rad/s, co5 = 1 1 .480 rad/s, c^= 3 1.645 rad/s,

co5 =62.036 rad/s, co5 = 102.55 rad/s, co7 = 153.19 rad/s

The zero frequencies correspond to the translatibnal and
rotational rigid-body modes. The nonzero natural frequencies
are determined by solving a transcendental characteristic
equation numerically. The lowest four modes were controlled,
using IMSC in conjunction with a nonlinear on-off control
law. The on-off controls provide for a deadband region on the
assumption that some small oscillations can be tolerated.
Implementation of the on-off controls makes use of switching
curves in the phase plane. Note that the on-off controls are
modal controls. The actual control forces are quantized, i.e.,
they represent linear combinations of on-off functions.

The actuators were located at 0.5, 2.5, 6.5, and 9.5 ft. The
modal control forces were selected as follows:

1) For rigid-body modes,
rjr= \ur\ + \ur\/cr

Ifi)r<dr, then fr = 0. If f\r >dr and in addition

a) ur>0 and w r>0, or ur>0>ur and \ur\<er9 then
/r=-*r-

b) ur<Q and w r<0, or ur<0<ur and \ur\<er) then
fr = kr. r=l,2 (19)

2) For elastic modes,

-kr, ur>dr

0, \ur\<dr,

kr, ur<-dr

r=3,4 (20)

where dr is the magnitude of the deadband region, er the
threshold velocity, cr a weighting factor, and kr the
magnitude of the modal control force. The values selected
were

fc7=0.3, tf; =0.002, e7=0.01

A:2=0.30 d2 =0.002, e2=0.02

*3=.0.11,- ^3=0.006, c7=2.00

^=0.10, ^=0.008, c2 = 2.00

The actuator force vector F(t) was synthesized from the
modal control force vector f ( t ) according to Eq. (10). The
nine displacement sensors were located at 0, 0.5, 2.5, 4.0, 6.5,
7.5, 9.5, 11.0, and 12 ft. The actuators were collocated with
four of the sensors, so that the nonlinearities in the actuator
performance could be compensated.1 The interpolation
functions were selected using concepts from the finite element
methods. The beam was divided into four elements such that
there were sensors at both ends of each element (external
nodes) and one sensor inside the element (internal node).
From Eq. (1 la) we can write

ur(t)= M(x)<i>r(x)Uj(xtt)dx (21)

where xjj-i an(* ^/\+; (y= 1,2,3,4) denote the boundaries of
the yth element. The length of each element is

s=4 (22)

To carry out integrations involving the interpolation func-
tions, we define the local coordinate f, related to the global
coordinate x by

j= 1,2,3,4, 0<£<1 .(23)

The displacement in they'th element can be approximated by

J_
(24)

where L, are interpolation functions having the form15

/-a, 1-a,

s=4 (25)

where aJ=(x%i-x§i-,)/hj. Substituting Eqs. (22-25) into
Eqs. (21), we obtain

where

L2 L3]T

(26>

(27)
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Fig. 3 Block diagram representation of natural control.
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Fig. 4 Actuator force at x = 0.5 ft.
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Fig. 5 Sensor output at x = 0.5 ft.

The matrix C can be constructed from Ijr by means of the
relation

s

rp = £j LJ

n=4\ k=9 (28)

where t denotes the interpolation function and j the element
number.

The process of obtaining the entries of the matrix C may
appear unduly complicated, but is is not much different from
that for deriving the mass and stiffness matrices in a finite
element analysis. Note that all the computations can be
carried out off-line before the control process begins, so that
there is no real-time computational burden.

Because velocity measurements were not available, the
modal velocities were estimated from

ur(t)-iir(t~At)
' - At n = 4 (29)

where At is the sampling period. It was chosen as 1/64 s.
The steps involved in the real-time, on-line control can be

summarized as follows; ;̂ _ _ _ ;
1) Read the sensors' output y ( t ) .
2) Convert the sensors output into modal displacements by

using Eq. (17a). This step requires nxk multiplications, so
that 36 multiplications are needed for the beam under con-
sideration.

3) Estimate the modal velocities using Eq. (29). This step
requires n=4 multiplications.

4) Determine the modal control forces using Eqs. (19) and
(20). This step requires two "IF" statements per controlled
mode, or 8 "IF" statements in the case of our experiment.

5) Synthesize the actual control forces F(t) by using Eq.
(10). This step requires n2 = 16 multiplications.

Figure 3 describes the control cycle in block diagram form.
The total computational effort per sampling period is
n(k+n + \) multiplications and 2n "IF" statements. For the
Langley beam experiment 56 multiplications and 8 "IF"
statements have to be performed during each sampling
period. This is an extremely small number of computations.
Hence, in a space environment, in which circuits com-
pensating for effects present in a laboratory environment are
not needed, the entire control task can be carried out by
microcomputers. In addition, it is clear from the above that
natural control permits parallel processing to compute the
control forces, so that the computational time per cycle can be
reduced even more.

ii Us)

1 2 3 4

Fig. 6 Actuator force at x = 6.5 ft.
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tr
1 2 3 4

Fig. 7 Sensor output at x = 6.5 ft.

Control of the beam was carried out for a disturbance in the
form of an initial unit impulse. Figures 4-7 show the sensors'
output and actuator forces. It is clear that IMSC performed
extremely well in controlling the motion of the beam. The
control forces exerted by the actuators seldom exceeded 0.1
Ibf and all displacements decayed within nine cycles of closed-
loop oscillation. This may appear to be a long time to damp
out the motion, but it should be noted that the beam admits
rigid-body motion, and rigid-body modes have infinite
period. Note that, because the modal controls are on-off with
bounded amplitudes by design, the magnitude of the control
effort is bounded, so that the control requires a certain
number of cycles. In designing modal control forces for rigid-
body modes, one must ensure that the applied impulse is not
too large.

A comparison of Figs, 5 and 7 indicates that the
displacement amplitude is higher in Fig. 5. This is because
Fig. 5 displays the displacement of a point close to the end of
the beam, and the contribution of the rigid-body rotation to
this displacement is much larger than the contribution to the
displacement of a point close to the center of the beam, where
the latter is plotted in Fig. 7. Note that the left sides of Figs. 5
and 7 represent the uncontrolled response, before the controls
go into action.

It was observed that the rigid-body modes and the first
flexible mode dominate the behavior of the beam and that the
second flexible mode contributes very little to the motion of
the beam. Control spillover into the uncontrolled modes was
negligible. This is because all the dominant modes were
controlled. From previous computer simulations and system
response, it is clear that modal filters using nine sensors were
capable of producing very accurate estimates of the modal
coordinates and velocities for the controlled modes.
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It was also observed that the actual frequencies of the
flexible modes are about 50% higher than the frequencies
computed by an eigenvalue analysis based on the assumption
that the beam was free-free. This difference is very likely due
to two* reasons. One reason lies in the lack of compensation of
the actuator dynamics. The actuators are attached to the beam
and each has a restoring spring on its shaft, which increases
the stiffness of the beam. Another reason is that the
assumption that the beam behaves like a free-free structure
may not be good enough, as it ignores the effects of the
supporting cables. These cables give rise to restoring forces,
thus raising the natural frequencies. In spite of the fact that
the model contains serious parameter errors, the control
scheme worked very well. This result is similar to the result
obtained in R.ef. 12, in which it is shown that, when IMSC is
used in conjunction with modal filters, errors in the system
parameters cannot destabilize the actual distributed system.
Hence, the results of this experiment may be regarded as
evidence of robustness of the IMSC method even for
nonlinear controls.

Finally, it should be noted that even though the number of
computations per control cycle is very small, because of the
compensating circuits required by the experimental setup, the
control forces were computed and applied after a delay of one
sampling period. This delay resulted in phase angles of 10 and
30 deg for the controlled flexible modes. It was observed that
theses phase angles did not affect the control system per-
formance perceptibly. It should be mentioned that when a
sampling period of 1/32 s was used the second flexible mode
became unstable, as the phase lag became excessively large. In
addition, Eq. (29) loses its accuracy for the higher modes as
the sampling period is lowered, because the number of
measurements during one period is reduced.

V. Conclusions
Results of a recent experiment conducted at NASA Langley

Research Center demonstrate the effectiveness of the in-
dependent modal-space control method in controlling the
motion of a free-free beam using nonlinear on-off modal
control laws. Note that on-off modal controls translate into
quantized actual controls. The control forces are implemented
by four electromagnetic force actuators in conjunction with
nine displacement sensors. It is observed that the natural
control scheme is very effective in suppressing the motion of
the beam* in spite of the fact that there are serious parameter
errors in the model. It is also shown that the controls require a
minimal amount of computational effort, so that in a space
environment the entire control scheme can be implemented
with microprocessors.
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